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Figure S1: Related to Figure 2. The structure of four gene regulatory networks used in 
this study titled by their network ID. These figures were generated using GNW package 
(Schaffter et al., 2011). Note that all the auto-regulatory edges as well as cycles were 
removed prior to feeding networks to Sergio although they are present in this figure. (a) 
Shows network 1, sampled from E.coli, containing 100 genes and 137 regulatory edges. 
(b) Shows network ID 2, sampled from E.coli, containing 100 genes and 258 regulatory 
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edges. (c) Shows network ID 3, sampled from S. cerevisiae, containing 400 genes and 
1155 regulatory edges. (d) Shows network ID 4, sampled from E. coli, containing 1200 
genes and 2713 regulatory edges. 
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Figure S2: Related to Figure 2. To interpret the total variation values and assess the 
quality of match between the real and synthetic data, for each statistic we looked at a pair 
of simulated replicate of DS3 and a real sample which their total variation is close to the 
median of the total variations of the corresponding statistic. This figure gives a qualitative 
understanding of the total variation score, which is a number between 0 and 1 reflecting 
how well two distributions match. Each row represents one of the quantities studied in 
Figure 2, and shows the distribution of that quantity in one of the simulated replicates and 
one of the real data sets; the two data sets selected for display here have a total variation 
(“tv”) that is typical for that quantity. (i) This column compares the distribution of synthetic 
against the real data as a box plot. (ii) This column shows an alternative visualization of 
the distribution of the quantity of interest in real data. (iii) This column shows an 
alternative visualization of the distribution of quantity of interest in the synthetic data. The 
quantities examined include (a) library sizes (b) zero counts per cell (c) zero counts per 
gene (d) mean mRNA counts and (e) variance of mRNA counts. 
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Figure S3: Related to Results. A curated gene regulatory network for mouse was 
obtained from RegNetwork database (Liu et al., 2015). After preprocessing and excluding 
the genes that are not present in the mouse brain scRNA-seq data (Zeisel et al., 2015) 
we obtained a gene regulatory network (GRN) containing 15272 genes and 76483 gene-
gene interactions. Due to the absence of prior knowledge about the regulatory role of the 
majority of these interactions, for each interaction we randomly assigned either an 
activation (probability of 75%) or a repression role (probability of 25%). The interaction 
strengths were uniformly sampled from the range 1 to 5 (similar to DS1-15) and master 
regulators’ production rates were sampled using the same settings used for DS2-8 to 
represent nine established cell types. We simulated this GRN using SERGIO to obtain 
one synthetic expression data containing 15272 genes and 3600 single-cells. 
Subsequently, we added technical noise by comparing this data against the mouse brain 
scRNA-seq data set (Zeisel et al., 2015) which contains the expression of the same 15272 
genes (genes that are not present in the RegNetwork’s GRN were excluded) in 3005 
single-cells. The quantities examined for adding technical noise include (a) library sizes 
(b) zero counts per cell (c) zero counts per gene (d) mean mRNA counts and (e) variance 
of mRNA counts. (f) Total variation between the real and simulated data after adding 
technical noise (synth) are small (<0.2) and are as good as total variations for the same 
statistics in DS1-8. (g) The inverse relation between genes’ mean expression and zero 
counts (per gene) present in the real data was reproduced after adding technical noise. 
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(h) Inverse relation between squared coefficient of variation and mean expression of 
genes over all single-cells is matched between real and simulated data after adding 
technical noise. The black line shows an arbitrary function of form 𝑦	~1/𝑥 which matches 
with the observed behavior in both real and synthetic data. As is evident from this plot, 
highly variable genes in the real data with mean expression > 0.15 were not captured in 
the simulated data. Addition tuning of parameters of SERGIO might help tune the 
variance of genes and improve the quality of match between the real and synthetic data. 
(i) The inverse relation of form 𝑦	~1/𝑥 is not a result of technical noise and is also 
observed in clean simulated data. 
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Figure S4: Related to Figure 4. Shows the distribution of correlation coefficients between 
all pairs of interacting genes (regulator – target pairs present in the “ground truth” GRN 
that was used for simulations) in clean and noisy data of one simulated replicate of DS3, 
as well as in data imputed by MAGIC (van Dijk et al., 2018). (a) Represents the distribution 
of TF-gene expression correlation coefficients in the clean simulated data. (b) Represents 
correlation coefficients in the noisy data. After adding technical noise, the co-expression 
signal in the data (panel a) is severely distorted. (c) Distribution of correlation coefficients 
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in the data underlying panel b, after imputation with MAGIC (van Dijk et al., 2018) using 
parameter setting t = 2. Even upon setting t to such a small value, several spurious co-
expression signals (right tail of distribution as compared to panel a) emerged in the data, 
compared to the ground truth shown in panel a. (d) Distribution of correlation coefficients 
after imputation with MAGIC using t = 7. This introduces even more false co-expression 
signals compared to panel c. (e) MAGIC imputed data with default t setting. We observe 
almost a uniform distribution over the whole range of correlation coefficients, showing a 
large number of false positives of co-expressed TF-gene pairs. 
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Figure S5: Related to Figure 4. Correlation structures in clean and noisy simulated data 
sets as well as imputed versions of the latter. Columns correspond to four arbitrarily 
selected regulatory interactions (TF-gene pairs) in DS3 (network 4). (a) Clean simulated 
data. Each panel shows the expressions of the chosen regulator and target pair, in single 
cells, and the Pearson correlation coefficient between these two observables is noted in 
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caption at the top. (b) TF and target gene expression values for the same TF-gene pairs 
as in (a), after technical noise has been added. The simulated UMI counts are shown. (c) 
TF and target gene expression values for the same TF-gene pairs as in (b), after imputed 
using MAGIC with t = 2. Note that level of co-expression appears greater than that in 
clean data (“ground truth”). (d-e) Same as (c), but with MAGIC run using t = 7 and t = 
default respectively.  
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Figure S6: Related to Results and STAR Methods. We used the GRN containing 1200 
genes (the same network as that used for DS3-8) to simulate data sets with 15 replicates 
using the mode of SERGIO that includes activator-activator cooperative regulation. 
Subsequently, we added technical noise by comparing this data set against 50 samples 
obtained from the mouse brain scRNA-seq data set (Zeisel et al., 2015) (the same 
samples as those used for adding noise to DS3). The quantities examined for adding 
technical noise include (a) library sizes, (b) zero counts per cell, (c) zero counts per gene, 
(d) mean mRNA counts, and (e) variance of mRNA counts. (f) Total variation between 
each sample and simulated replicate after adding technical noise. (g) The inverse relation 
between genes’ mean expression and zero counts (per gene) present in the real data 
was reproduced after adding technical noise. (h) Inverse relation between squared 
coefficient of variation and mean expression of genes over all single-cells is matched 
between real and simulated data after adding technical noise. The black line shows an 
arbitrary function of form 𝑦	~1/𝑥 which completely matches with the observed behavior 
in both real and synthetic data. (i) The inverse relation of form 𝑦	~1/𝑥 is not a result of 
technical noise and is also observed in clean simulated data. 
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Figure S7: Related to Results and STAR Methods. Comparing the performance of 
GENIE3 on three clean simulated data sets, namely a data set without cooperative 
regulation (DS3; called “w/o Coop” here), a data set with moderate cooperative regulation 
(“w/ Coop”), and a data set with large cooperative regulation (“w/ large Coop”) dominating 
non-cooperative effects. All three data sets were simulated with the same underlying GRN 
(Network ID 4) and in 15 replicates. (a) ROC and (b) PRC of GRN prediction by GENIE3 

(a) (b) 

(c) (d) 

(e) (f) (g) 

(h) (i) (j) 



(on one simulated replicate from each data set) shows that inclusion of cooperative 
regulation does not impact GRN inference. We next added technical noise to the data set 
with moderate cooperativity (w/ Coop), in a way that matches the noise in a mouse brain 
scRNA-seq data set (Zeisel et al., 2015) (Figure S6). GENIE3 was applied on this noisy 
data set before and after imputation by MAGIC (t=2). (c) ROC and (d) PRC of GRN 
predicition by GENIE3 (on one simulated replicate from each data set) confirms that 
without imputation, GRN inference from noisy data is not impacted by inclusion of 
cooperative regulation (compare “w/o Coop noisy” to “w/ Coop noisy”). Moreover, similar 
to our observations on data without cooperative regulation, using MAGIC (t=2) to impute 
noisy data increases signal for GRN inference by GENIE3, even when the data was 
generated by a GRN with cooperative regulation (compare “w/ Coop noisy” to “w/ Coop 
MAGIC(t=2)”)). Mean AUROC (e) and AUPRC (f) over 15 replicates of each of the three 
clean simulated data sets and mean AUROC  (h) and AUPRC (i) over 15 replicates of 
each of the four noisy simulated data sets (two before imputation and two after imputation 
by MAGIC) show the same trend discussed in (a-d). We next evaluated the enrichment 
of regulator-target interactions that are affected by cooperativity (e.g., interactions B-A 
and C-A are said to be affected by cooperativity if B and C cooperatively regulate A) 
among the top-k predictions of GENIE3 obtained from data sets simulated with 
cooperative regulation. Also, to assess the impact of cooperativity on this enrichment, we 
collected the interactions affected by cooperativity (in cooperativity simulations) and 
evaluated their enrichments among GENIE3 predictions obtained from simulated data in 
the absence of cooperativity. Note that this is feasible because we used the same GRN 
topology in the two modes of simulation. (g) Shown is the fraction of such interactions 
recovered in the top-k predictions (x axis) of GENIE3 applied to clean simulated data sets. 
Although inclusion of cooperative regulation does not impact GRN inference from 
simulated data (e.g., Figure S7 a-b), interactions that were affected by cooperativity are 
more enriched among the top GENIE3 predictions as compared to the same interactions 
in the absence of cooperativity. (j) Shows the enrichment of interactions affected by 
cooperativity among the top-k predictions of GENIE3 applied to noisy simulated data sets 
before and after imputation by MAGIC. Imputation by MAGIC increases the enrichment 
of such interactions (purple versus red curve). 
  



Supplemental Figure S8 
 
 

 
 
 
Figure S8: Related to Figure 5. PC representation of wild-type (WT) and knockout (KO) 
simulated trajectories using GRN obtained by GENIE3 (a) Two-dimensional PC 
representation of WT trajectory (identical to Figure 5b, right). (b) Projection of Tcf-KO 
simulated trajectory on the PC space of WT trajectory. The average Euclidian distance 
between cluster centers of Tcf7-KO and WT trajectories in 10 dimensional PC space is 
8.2. (c) Projection of Gata3-KO simulated trajectory on the PC space of WT trajectory. 
The average Euclidian distance between cluster centers of Gata3-KO and WT trajectories 
in 10 dimensional PC space is 1.0. (d) Projection of Spi-KO simulated trajectory on the 
PC space of WT trajectory. The average Euclidian distance between cluster centers of 
Spi-KO and WT trajectories in 10 dimensional PC space is 1.2. 
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Figure S9: Related to Figure 6. User can control the thickness of differentiation path and 
the dispersion of cells around the trajectory. The user defined migration rate 𝑟 controls 
the number of paths that are simulated between two cell types (each edge in the provided 
differentiation graph). For a given number of cells per cell type (𝑛𝐶𝑒𝑙𝑙𝑠) and migration rate 
𝑟, a total number of 𝑟 × 𝑛𝐶𝑒𝑙𝑙𝑠 paths is simulated between the two cell types. Finally, 
single-cells are randomly sampled from the aggregation of all simulated paths. (a,b,c) For 
fixed unspliced and spliced noise amplitudes 𝑞/ and 𝑞0 respectively, increasing the 
migration rate 𝑟 increases the thickness of the simulated differentiation path as single-
cells are sampled from a bigger pool of cells in between the two origin and end cell types. 
(d,e,f) For fixed migration rates 𝑟, increasing the spliced and unspliced noise amplitudes 
increases the dispersion of single cells because the higher stochastic noise increases the 
variance among single-cells. 
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Figure S10: Related to Figure 6. (a) PCA representation of single cells in the clean 
simulated version of DS13. This data set contains 24000 cells in total. For simulating 
DS13 we used the same GRN, parameter settings, and differentiation graph as we used 
for DS10. (b) PCA representation of single cells in the clean simulated version of DS14. 
This data set contains 36000 cells in total. For simulating DS14 we used the same GRN, 
parameter settings, and differentiation graph as we used for DS11. 
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Figure S11: Related to Figure 6. Comparisons between differentiation data sets 
generated by SERGIO and real scRNA-seq data sets. We show the distributions of per-
cell quantities in (a,c), and per-gene quantities in (e, g, i), for DS13 and DS14 separated 
by dashed lines. These comparisons are shown between one sample from the real data 
set (“real”), the clean simulated data (“clean”), and its technical noise-added version 
(“synth"). The real data used for DS13 is a published 10X genomics single-cell data of 

DS13 DS14 (a) (b) Total Variation 

(c) (d) 

(e) (f) 

(g) (h) 

(i) (j) 



dentate gyrus of mouse hippocampus (Hochgerner et al., 2018), and for DS14 we used 
a single-cell RNA-seq data set from the mouse cerebral cortex (Zeisel et al., 2015). More 
comprehensive comparisons – between the noisy simulated data and every real sample 
– are shown in panels to the right: the total variation (see METHODS) is calculated to 
compare the real and synthetic distributions and the average total variation across all 
comparisons is shown in panels (b, d, f, h, j). (a,b) Distributions and total variation of 
library sizes. (c,d) Distributions and total variation of zero counts per cell (normalized by 
number of genes). (e,f) Distributions and total variations of zero counts per gene 
(normalized by total number of cells). (g,h) Distributions and total variations of genes’ 
mean expression. (i,j) Distributions and total variations of genes’ expression variances.  
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Figure S12: Related to Figure 7. Distributions of dropout rates in single cells belonging 
to (a) red, (b) blue, (c) green, (d) purple, (e) orange, and (f) yellow, cell types. For each 
cell type, the ratio of cells which have 80% or more dropout rate is denoted. The orange 
cell type suffers the most from dropout and its distribution shows the most skewness 
toward large dropout rates as compared to other cell types. This is consistent with the 
poor correlation observed for this cell type, between the inferred pseudotime from the 
noisy and clean expression matrices (Figure 7g). 
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Supplemental Tables 
 
 
Supplemental Table S1: Related to STAR Methods. Technical noise parameters used 
in this study 
 

DS-ID 
Outlier Genes Library Size Dropouts 

Low Quality 
threshold * 

𝜋; 𝜇; 𝜎; 𝜇> 𝜎> 𝑘 𝑞 𝜏 

1 0.01 0.8 1 4.8 0.3 20 82 5 

2 0.01 0.8 1 6 0.4 12 80 5 

3 0.01 0.8 1 7 0.4 8 80 5 

4 0.01 3 1 6 0.3 8 74 5 

5 0.01 3 1 6 0.4 8 82 5 

6 0.01 5 1 4.5 0.7 8 45 5 

7 0.01 3 1 4.4 0.8 8 85 5 

8 0.01 4.5 1 10.8 0.55 2 92 2500 

13 0.01 0.8 1 3.6 0.4 8 70 5 

14 0.01 0.8 1 5 0.4 4 80 5 

 
( * ) Cells with a total count < 𝜏 were considered as low quality cells and were removed 
from both real samples and synthetic replicates.  
 
 
 
Supplemental Table S2: Related to STAR Methods. Parameter settings used for 
running Singe (Deshpande et al., 2019) 
 

Parameter Value 
𝜆 0, 0.1, 0.01 

(𝑑𝑇,num_lags)  (3,5), (5,9), (9,5), (5,15), (15,5) 
kernel_width 0.5, 1, 2, 4 

prob_zero_removal 0 
prob_remove_samples 0.2 

num_replicates 10 
 
 
 
 



 
Supplemental Table S3: Related to STAR Methods. Low and high expression ranges 
from which the master regulators’ production rates were sampled 
 

DS-ID Low Expression Range High Expression Range 
DS1 [0.2  0.5] [0.7  1] 

DS2-8 [0  2] [2  4] 
DS9-15 [0  1] [3  4] 

 
 
 
Supplemental Table S4: Related to STAR Methods. A comparison between running 
times of SERGIO and BoolODE 
 

Experiment 
Network 

ID 
Number 
Genes 

Number Cell 
Type/Simulation 

Time 

SERGIO 
time (s) 

BoolODE 
time (s) 

1 4 1200 9 4607 8179 

2 4 1200 1 733 1058 

3 3 400 1 132 1145 

4 2 100 1 28 75 

 
 
 
 
 
 
 
 
 
 


